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Abstract
     Climate change is driving shifts in the species distribution, and its impact is 

particularly pronounced on high mountain plants sensitive to warming. Prunus 

transarisanensis is an endemic species found exclusively in the high-altitude 

regions of Taiwan, known for its ornamental cherry tree. In this study, species 

survey records and environmental data were integrated, and ensemble ecological 

niche modeling was employed to predict the current and future suitable habitats, 

as well as their spatiotemporal dynamics for P. transarisanensis under various 

Geographic Range Shifts of Taiwan’s Endemic Plant 
Species Prunus transarisanensis under Climate 

Change

氣候變遷下臺灣特有植物阿里山櫻花
(Prunus transarisanensis) 的地理分布變化
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climate scenarios (shared socioeconomic pathways SSP126, SSP370, SSP585, 

2071-2100). The model identified that a cool environment and moderate precip-

itation are key characteristics for suitable habitats of P. transarisanensis. In the 

analysis of the dynamics of suitable habitat distribution under three future sce-

narios, it was found that climate change will transform a significant portion of 

the currently suitable habitats into vulnerable states, regardless of the scenario. 

Even under the low emission scenario (SSP126), only a small portion of suitable 

habitat may persist as refugia. However, under the SSP370 or SSP585 scenarios, 

habitat degradation will be more severe, potentially leading to a high risk of ex-

tinction for the species. Based on the above results, this study proposes several 

suggestions to assist P. transarisanensis to adapt to climate change.

Key words: range dynamics, ensemble ecological niche modeling, shared socio-

economic pathways, extinction, conservation

摘要
氣候變遷正在驅使生物的地理分布發生改變，對暖化敏感的高山植物而言，

其影響尤為顯著。阿里山櫻花 (Prunus transarisanensis) 分布於臺灣高海拔地區，

是一種具觀賞價值的特有種櫻花。本研究整合物種調查及環境資料，運用集成生

態棲位建模，預測當前和未來氣候情境 ( 共享社會經濟路徑 SSP126、SSP370、

SSP585，2071-2100 年 ) 下，該物種之適宜生育地範圍及其時空分布動態。由所

建構的集成模型可發現，冷涼環境與適度降水，是阿里山櫻花適宜生育地的關鍵

特徵。未來 3 種情境下的適宜生育地分布動態分析結果顯示，無論何種情境，氣

候變遷都將導致當前適宜生育地，大幅轉為脆弱狀態，即便是低碳排的 SSP126

情境下，也僅能保存少部分適宜生育地，供作避難所，而在 SSP370 或 SSP585
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情境下，生育地退化情況將更顯嚴峻，最終可能導致該物種面臨高度滅絕風險。

綜合上述推測結果，本研究最後也提出了幾點協助阿里山櫻花調適氣候變遷的建

議。

關鍵詞：分布動態、集成生態棲位建模、共享社會經濟路徑、滅絕、保育
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Introduction
Climate change has been regarded 

as an unavoidable global phenomenon 

of this century and the most significant 

threat to Earth’s biodiversity (Warren 

et al. 2013; Urban 2015). Within the 

next 50 years, approximately one-

third of the world’s species may face 

the threat of extinction due to this 

phenomenon (Román-Palacios and 

Wiens 2020). The complex terrain of 

high mountains fosters species diversity 

and endemism (Steinbauer et al. 2016; 

Noroozi et al. 2018). However, due 

to isolation effects, it also shapes the 

rarity, scattered distribution, and narrow 

habitat range of mountain species. 

These mountain species are often more 

sensitive to climate change, especially 

plant communities (Thuiller et al. 

2005; Adhikari et al. 2018). To adapt 

to the impacts of climate change, most 

mountain plant species are shifting 

towards higher altitudes, tracking new 

suitable climate zones (Jump et al. 2012; 

Kellner et al. 2023). This migration 

allows them to thrive in environments 

with optimal conditions for their growth 

and survival. Unfortunately, under the 

impact of global warming, as elevation 
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increases, not only does the temperature 

r i s e  r a p i d l y  ( P e p i n  e t  a l .  2 0 1 5 ; 

Lamprecht et al. 2018), but available 

areas also are significantly decreasing 

(Freeman et al. 2018). Furthermore, 

the natural barriers of high mountains 

restrict the dispersal of plants (Essl et 

al. 2011; Di Musciano et al. 2020; Chen 

et al. 2023), exacerbating the impact of 

climate change on mountain vegetation 

simultaneously. 

Ecological niche modeling (ENM) 

predicts potential distribution ranges 

based on the correlation between species 

presence records and environmental 

variables. When combined with data on 

climate change scenarios, it enhances 

understanding of species responses 

to cl imate change and aids in the 

formulation of conservation strategies 

(Dhyani et al. 2021; Hoveka et al. 

2022; Ceccarelli et al. 2022). ENM has 

developed various types of algorithms, 

such as general linear model (GLM) and 

multivariate adaptive regression splines 

(MARS) for regression methods, as well 

as machine learning methods like boosted 

regression tree (BRT), maximum entropy 

(MaxEnt), and support vector machine 

(SVM). Recently,  the “ensemble” 

ecological niche modeling (EENM), 

which integrates predictions from 

multiple models, has been continuously 

evolving. Compared to single models, 

EENM achieves consensus from multiple 

algorithms, mitigating the uncertainties 

in single-model predictions and leading 

to improved prediction accuracy (Araújo 

and New 2007; Marmion et al. 2009). 

Taiwan has many high mountains, 

and is characterized by complex terrain 

and environments that have fostered rich 

and unique plant diversity. Statistical 

data from the past century indicates that 

Taiwan has experienced a temperature 

increase of approximately 1.4°C, which 

is significantly higher than the global 

average (Lu et al. 2012). Moreover, the 

rate of warming in high mountain areas 

has surpassed that of plains and lowlands 
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(Lin et al. 2015). Pas​t studies have 

examined the effects of climate change 

on mountain vegetation composition 

and distribution. For example, Chou 

et al.  (2011) predicted that future 

climate warming would drive changes 

in Taiwan’s mountainous vegetation 

distribution, causing many plant species 

to migrate to higher altitudes. Jump et al. 

(2012) observed that the rise of the forest 

line is consistent with the warming trend. 

Kuo et al. (2022) suggested that some 

vulnerable species might face the threat 

of extinction due to climate change.

Prunus transarisanensis is an endemic 

species of  Taiwan,  taxonomically 

classified in the Rosaceae family and 

the Prunus genus. It is found at an 

elevation of approximately 2,500 m. Its 

appearance is that of a small shrub tree 

with whitish or light pink petals (Hsieh 

and Ohashi 1993). Due to its highly 

attractive appearance, this tree species 

is one of the important components 

of cherry blossom tourism in Taiwan, 

significantly contributing to the income 

of the Alishan region each year (Liu 

et al. 2021). However, among various 

cherry tree species, the habitats of P. 

transarisanensis are situated at relatively 

higher altitudes, making them susceptible 

to the impacts of cl imate change. 

Consequently, this study assesses future 

threats to P. transarisanensis based on 

species survey data and EENM. The 

investigation seeks to determine: (1) 

what are the major factors affecting 

species distribution; (2) how the suitable 

habitat transforms under different climate 

change scenarios; and (3) if it is highly 

vulnerable to the impacts of climate 

change, how can we assist this species in 

adapting?

Materials and methods
Scope of study and species occur-

rence record

The geographical area covered 

by this study is the subtropical island 

of Taiwan, which has a land area of 
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approximately 36,000 km2. Its land is 

predominantly covered by forests, while 

urban and agricultural areas are mainly 

located in coastal plains. The island’s 

terrain fluctuates greatly, consisting 

mostly of mountains and hills. The 

variation in altitude among the high 

mountains results in a range of complex 

cl imate types,  including tropical , 

subtropical, temperate, and cold zones. 

Due to this diverse climate, a rich variety 

of vegetation ecosystems has formed, 

leading to the identification of 12 types 

of zonal forests and 9 types of azonal 

forests (Li et al. 2013).

The species occurrence records 

a r e  de r ived  f rom the  eco log i ca l 

survey database (ecollect.forest.gov.

tw). This dataset was systematically 

collected through island-wide surveys 

commissioned by the Forestry and 

Nature Conservation Agency (FANCA), 

with the collaboration of experts and 

scholars from various universities and 

research institutions. Only occurrence 

records of the genus Prunus, totaling 

13,301 records and including 86 records 

of the target species, from the years 1981 

to 2010 were extracted to match the time 

interval of predictors. To maintain precise 

geographic coordinates, data with fewer 

than three decimal places were removed. 

Furthermore, spatial  thinning was 

performed using the “spThin” package 

in the R version 4.1.3 environment 

(Aiello‐Lammens et al. 2015) to reduce 

the impact of spatial autocorrelation and 

geographic sampling bias. In order to 

achieve the spatial resolution required 

for predictors, a minimum neighbor 

distance of at least 1 km was set between 

each occurrence record. After processing, 

there were 32 occurrence records of P. 

transarisanensis (Fig. 1a), along with 

1,230 records of other species.

Environment variables

    Climate, soil, and topography are 

commonly considered factors in as-

sessing the habitat suitability of plant 
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species (Titeux et al. 2016; Hageer 

et al. 2017; Wan et al. 2019). There-

fore, the predictors used encompass 

these three factors. This study did 

not incorporate land cover variables 

because all occurrence records of P. 

transarisanensis were located within 

forested areas according to the Min-

istry of the Interior’s land use survey 

results (maps.nlsc.gov.tw). For the 

current climate scenario, 19 biocli-

matic variables (BIO1-BIO19, Table 

S1) were extracted from the CHELSA 

V2.1 (chelsa-climate.org), with data 

spanning from 1981 to 2010 (Karger 

et al. 2017). Soil data were down-

loaded from the ISRIC-World Soil 

Information (isric.org) and included 

six soil variables: coarse fragments 

volumetric, soil texture fraction clay, 

soil texture fraction sand, soil texture 

fraction silt, soil pH, and cation ex-

change capacity. The digital elevation 

model was obtained from the Minis-

try of the Interior (data.gov.tw) and 

processed using the Surface Tool in 

ArcGIS 10.8 (ESRI Inc.) software to 

generate variables such as slope and 

aspect. The spatial resolution of all 

layers was re-sampled to 1 × 1 km. 

To avoid collinearity, a selection was 

conducted according to Pearson cor-

relation coefficients (< 0.7, Dormann 

et al. 2013). When two variables were 

highly correlated, the variable with 

the greatest ecological relevance to 

P. transarisanensis was chosen. The 

Pearson correlation analysis for en-

vironmental variables was performed 

using the R package “virtualspecies” 

(Leroy et al. 2016).

For future scenarios, CHELSA 

V2.1 also provides future climate data. 

Five global circulation models (GCMs, 

namely GFDL-ESM4, IPSL-CM6A-LR, 

MPI-ESM1-2-HR, MRI-ESM2-0, and 

UKESM1-0-LL) and three greenhouse 

gas emission scenarios (SSP126, SSP370, 

and SSP585) were utilized. Each scenario 

represents radiative forcing increasing 
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by 2.6, 7.0, and 8.5 Wm-2 between 1750 

and 2100, respectively. The bioclimatic 

data under these three scenarios for the 

2071-2100 period was downloaded. 

Table S1 shows the mean values within 

the study area. The future bioclimatic 

variables generated by each of these five 

GCMs were used to construct models 

for P. transarisanensis, and the average 

probability was calculated as the final 

result to evaluate habitat suitability. 

Moreover, due to the relative stability 

of soil and topographical factors, it 

is assumed that the relevant variables 

remain constant.

Ensemble ecological niche modeling

The R package “sdm” (Naimi 

and Araújo 2016) was used to execute 

EENM to predict a suitable habitat for P. 

transarisanensis. Five algorithms were 

applied, including BRT, GLM, MARS, 

MaxEnt, and SVM. Since all algorithms 

required background data (pseudo-

absence points), pseudo-absences could 

only be selected from areas where other 

plant species had been recorded, a more 

objective approach to avoid considering 

under-sampled areas as unsuitable for 

P. transarisanensis (Ghisbain et al. 

2020; Lu and Huang 2023). From the 

occurrence records of P. transarisanensis, 

70% were randomly selected for the 

training dataset, while the remaining 

30% were allocated to the testing 

dataset. The model performance of each 

algorithm was evaluated using bootstrap 

sampling on the training dataset. The 100 

replicates were constructed using five 

algorithms, resulting in 500 models. 

Model accuracy was evaluated using 

two metrics a threshold-independent 

statistic—the area under the receiver 

operating characteristic curve (AUC) 

(Fielding and Bell 1997) and a threshold-

dependent statistic—the true skills 

statistic (TSS) (Allouche et al. 2006). 

The AUC was produced using the true 

positive rate (i.e., sensitivity) and the 

false positive rate from the classification 
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table. The TSS was determined using 

the sensitivity and the true negative rate 

(i.e., specificity). Higher values for these 

two metrics indicate better prediction 

accuracy of the model. The standard 

for excellent models was set as values 

of AUC and TSS higher than 0.9 and 

0.8, respectively (González-Ferreras et 

al. 2016). The ensemble method was 

performed by retaining models with 

high predictive accuracy (TSS > 0.8) and 

then calculating the weighted average 

based on their TSS values to generate an 

ensembled occurrence probability map of 

species. On the map, higher probabilities 

indicate a greater likelihood of suitable 

habitat for the species. The probability 

corresponding to the maximum TSS 

was considered the threshold (Liu et al. 

2013) to convert the map into a binary 

map of suitable and unsuitable habitats. 

In addition, the importance of each 

predictive variable for model fitting was 

assessed using the “getVarImp” function 

of the “sdm” R package. The response 

curve, revealing the relationship between 

the species occurrence probability and 

the variables, was generated using the 

“rcurve” function from the same R 

package.

Spatiotemporal dynamic analysis

According to the methodology 

outlined by Dai et al. (2019), changes 

in suitable habitats were assessed, and 

the generation of dynamic ranges was 

performed using the Combine Tool in 

ArcGIS as follows:

a. Vulnerable habitat: Regions of 

habitat currently deemed suitable but 

predicted to become unsuitable under the 

future climate scenario.

b .  Increased sui table  habi ta t : 

Regions of habitat currently considered 

unsuitable but predicted to become 

sui table  under  the  future  c l imate 

scenario.

c. Climate refugia: Regions of 

habitat currently suitable and predicted to 

remain suitable under the future climate 
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scenario.

Results
Using  a  c r i t e r ion  o f  Pearson 

correlation coefficients < 0.7, the 28 

predictive variables obtained earlier 

were narrowed down to 11 variables 

for constructing the prediction models. 

Table 1 shows the average AUC and 

TSS calculated from the test dataset 

using five algorithms, each with 100 

replicates. In general, BRT, MaxEnt and 

SVM had good accuracy; of these, BRT 

showed the best performance, indicating 

that these models had greater prediction 

power. Only 112 high-performance 

models (TSS > 0.8) were retained for the 

following weighted averaging to ensure 

highly accurate predictions. As a result, 

this ensemble model was employed 

to predict  suitable habitats  for  P. 

transarisanensis. The habitat distribution 

of the entire study area is shown in Fig. 

1b. It is evident that the spatial pattern is 

confined to areas with relatively higher 

altitudes, estimated to cover a total area 

of 1,396 km².

Table 1 The area under the curve for the receiver operating characteristic (AUC) and true skill statistic 
(TSS) generated by five algorithms

表 1 5種演算法獲取之接收者操作特徵曲線下面積 (receiver operating characteristic, ROC) 與真實技

        能統計值 (true skill statistic, TSS)

SD: standard deviation

11 
 

Table 1. The area under the curve for the receiver operating characteristic (AUC) and 1 

true skill statistic (TSS) generated by five algorithms 2 

表 1 5種演算法獲取之接收者操作特徵曲線下面積(receiver operating 3 

characteristic, ROC)與真實技能統計值(true skill statistic, TSS) 4 

Algorithm AUCmean SD TSSmean SD 

Boosted regression 0.89 0.07 0.74 0.11 

Generalized L model 0.86 0.06 0.69 0.11 

Multivariate adaptive regression splines 0.84 0.10 0.67 0.13 

Maximum entropy 0.89 0.06 0.72 0.10 

Support vector machine 0.88 0.07 0.71 0.12 

SD: standard deviation 5 

 6 

 7 



11

TW J. of Biodivers.26(4):1-28, 2024台灣生物多樣性研究

Fig. 1 (a) Occurrence records of Prunus transarisanensis, and a digital elevation model. Brighter colors 
indicate higher elevations; (b) predicted results according to the ensemble model.

圖 1 (a) 阿里山櫻花 (Prunus transarisanensis) 發生紀錄與研究區數值高程模型，亮度愈高代表海拔

愈高；(b) 集成模型所推估之適宜生育地範圍。
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Taking into consideration the impor-

tance of each variable in model fit, the 

variables with an importance > 10% 

include minimum temperature of 

coldest month (78.82%), precipitation 

of warmest quarter (22.63%), slope 

(10.66%) and soil texture fraction silt 

in percent (10.19%). The effects of 

the remaining variables are relatively 

insignificant (Table 2). The climatic 

variables are clearly the most domi-

nant, with the minimum temperature 

of the coldest month and precipita-

tion of the warmest quarter being the 

two most important variables that are 

related to the species’ occurrence in 

Table 2 Estimates of importance (%) of the predictor variables to the ensemble model
表 2 各預測變項對集成模型的重要性 (%)

12 
 

表 2 各預測變項對集成模型的重要性(%) 1 

Variable Importance 

Minimum temperature of coldest month 78.82 

Precipitation of the warmest quarter 22.63 

Slope 10.66 

Soil texture fraction silt in percent 10.19 

Precipitation of the coldest quarter 8.38 

Cation exchange capacity 8.24 

Mean diurnal range 7.51 

Aspect 7.02 

Temperature seasonality 5.93 

Soil pH 5.82 

Soil texture fraction sand in percent 4.45 

The primary contribution variables from ensemble prediction indicate that the 2 

probability of occurrence was highest at the lowest minimum temperature of the coldest 3 

month and precipitation of the warmest quarter (Fig. 2). The peak value of the former 4 

variable occurred below 1°C, while that of the latter variable occurred around 700 mm. 5 

Analysis of the response curves above indicates that P. transarisanensis prefers a cool 6 

environment and requires moderate precipitation. 7 
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ensemble prediction.

The primary contributing variables 

from ensemble prediction indicate that 

the probability of occurrence was highest 

at the lowest minimum temperature of 

the coldest month and precipitation of the 

Fig. 2 Response curves of the primary contribution variables based on the ensemble prediction. (a) 
minimum temperature of the coldest month; (b) precipitation of the warmest quarter.

圖 2 阿里山櫻花 (Prunus transarisanensis) 對集成模型主要變項之反應曲線，(a) 最冷月最低溫；(b) 
最暖季降水量。

warmest quarter (Fig. 2). The peak value 

of the former variable occurred below 

1°C, while that of the latter variable 

occurred around 700 mm. Analysis of 

the response curves above indicates 

that P. transarisanensis prefers a cool 
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environment and requires moderate 

precipitation.

From the current to the future, 

t he  hab i t a t  dynamic  r ange  o f  P. 

transarisanensis is projected. Overall, in 

the future, only two types of habitats will 

remain: climate refugia and vulnerable 

habitats, with the majority of the area 

occupied by vulnerable habitats. Under 

the low-emission SSP126 scenario, 

only a small amount of suitable habitat, 

estimated at approximately 355 km², can 

be maintained as refugia. Under the more 

severe warming scenarios of SSP370 and 

SSP585, the majority of suitable habitats 

are predicted to transition into vulnerable 

habitats, and climate refugia virtually 

cease to exist (Fig. 3).

Discussion
Due to its significant contribution 

to performance improvement, EENM is 

one of the most commonly used tools for 

predicting the impact of climate change 

on suitable habitats of species (Yun et al. 

2017; Jung et al. 2023). The ensemble 

model constructed in this study was 

employed to predict the distribution of 

P. transarisanensis. Among the single 

algorithms, BRT, MaxEnt, and SVM 

were found to perform exceptionally 

well. A commonality among them is 

that they all belong to machine learning 

algorithms. Compared with the two 

linear models of GLM and MARS, 

machine learning algorithms are able to 

process non-linear relationships between 

predictors (Recknagel 2001). Therefore, 

this might be the reason why the models 

fitted by these three algorithms showed 

relatively better performance, as stated 

above. The result is similar to previous 

investigations on other plant species 

(Rahmanian et al. 2021; Sarma et al. 

2022). To maintain the stability of the 

final model, only high-performance 

models are retained for the ensemble, 

ensuring that subsequent scenario 

simulations and conservation planning 

are built on a robust scientific foundation.
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Fig. 3 The dynamic range of suitable habitat for Prunus transarisanensis. The upper left panel shows 
the current distribution, while the upper-right, bottom-left and bottom-right panels represent the 
SSP126, SSP370, and SSP585 emission scenarios, respectively, for the period of 2071-2100.

圖 3 阿里山櫻花 (Prunus transarisanensis) 的適宜生育地分布動態。左上圖為當前潛在分布，右上、

左下與右下圖分別表示直至 2071~2100 年間，SSP126、SSP370 與 SSP585 情境下的潛在分

布變化。
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P r u n u s  s p e c i e s  a r e  h i g h l y 

sensitive to temperature, which is one 

of the primary factors regulating their 

flowering stage. Similar to annual or 

biennial plants, Prunus species undergo 

a vernalization process. This involves 

accumulating a certain amount of chilling 

during endodormancy and heat during 

ecodormancy to ensure proper flowering 

in spring (Luedeling et al. 2013; Fadón 

et al. 2015). Therefore, maintaining a 

certain low-temperature level during the 

winter is one of the key prerequisites for 

their subsequent growth and development 

cycle (Szalay et al. 2010; Luedeling et 

al. 2013; Benmoussa et al. 2017; Zhang 

et al. 2023). The model fitting in this 

study indirectly supports this perspective. 

The ensemble model indicated that 

among the temperature-related variables, 

the minimum temperature of the coldest 

month strongly influenced the prediction 

of suitable habitat for P. transarisanensis. 

Habitats with a certain level of cold 

during the coldest month are relatively 

suitable for this species. After sufficient 

chill accumulation, the reproductive 

act ivi ty  s tar ts  with  inf lorescence 

emergence as pointed out by Sakar et 

al. (2019). On the contrary, relatively 

high temperatures during winter may 

affect the tolerance limit to flowering, 

disrupting their phenological cycles 

and resulting in significant negative 

consequences. Additionally, a peak 

value is observed in the curve around 

1°C, likely attributed to other variables, 

though it does not alter the overall trend 

interpretation. Besides temperature, 

precipitation in mountain areas is also 

an important factor, influencing not only 

plant growth but also genetic variations 

(Chaves et al. 2003; Manel et al. 2012). 

This study suggests that moderate 

precipitation (approximately below 1,000 

mm) during the warm season is favorable 

for P. transarisanensis. Conversely, 

excessive precipitation may lead to 

adverse outcomes.

As high mountain plants have 
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narrow elevation tolerance, they are 

more exposed to a greater risk of habitat 

loss and local extinction due to climate 

change than species distributed at lower 

elevations (Guisan and Theurillat 2000; 

Engler et al. 2011). In this study, the 

species distribution predictions indicate 

that P. transarisanensis is found in the 

mountainous areas on the northern side 

of Taiwan, which have characteristics 

similar to temperate climate zones (Li 

et al. 2015). However, according to 

past climate observations, Taiwan has 

experienced increasing temperatures and 

continuous rise in extreme rainfall over 

the past few decades (Hsu and Chen 

2002; Shiu et al. 2009; Jump et al. 2012; 

Tung et al. 2022). Therefore, the climate 

in Taiwan is becoming increasingly less 

favorable for P. transarisanensis, which 

prefers cooler and moderate precipitation 

environments in the mountains. This also 

suggests that the suitable habitat of this 

species is likely undergoing qualitative 

shifts due to climate change.

As for future projections,  the 

resul ts  of  most  GCMs agree  that 

Ta i w a n  i s  h i g h l y  s u s c e p t i b l e  t o 

extreme temperatures. For instance, 

heatwaves are expected to intensify, 

becoming more frequent and prolonged. 

Conversely, extremely cold days are 

gradually disappearing (Tsai et al. 2023). 

Regarding changes in spatial patterns 

of temperature, the warming is more 

significant in high mountains than in 

plains, profoundly impacting ecosystems 

and species distributions (Lin et al. 2015). 

Additionally, precipitation distribution 

in various regions is significantly 

uneven, leading to increasing drought 

and flood risks (Huang et al. 2012). 

According to the analysis results of this 

study, the majority of suitable habitats 

for P. transarisanensis are projected to 

transition into vulnerable habitats due to 

the impact of climate change. Even under 

the low emission scenario (SSP126), 

the available area serving as climate 

refugia is constrained. Under the more 
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severe emission scenarios of SSP370 and 

SSP585, the predicted degradation of 

suitable habitats is expected to be more 

severe, potentially leading to a high risk 

of extinction for this species.

In order to adapt to future climate 

change, this study proposes several 

recommendations for the conservation 

of P. transarisanensis. Firstly, in the 

current conservation assessment system 

in Taiwan at the regional level and 

according to the International Union 

for Conservation of Nature (IUCN) 

criteria, this species is classified as 

“Near Threatened,” falling short of the 

threatened status (Editorial Committee 

of the Red List of Taiwan Plants 2017; 

IUCN 2022). However, it is important 

to emphasize that it is a “vulnerable 

species” susceptible to the impacts of 

climate change, which requires increased 

conservation efforts. Furthermore, given 

the potential vulnerability of habitats, 

immediate priority should be given to 

these areas for ex situ conservation. Due 

to the well-established conservation 

network in the mountainous areas of 

Taiwan (Tang et al. 2006), there is 

limited space available for adjusting 

nature reserves to maintain suitable 

habitats. Therefore, it is necessary to 

enhance long-term monitoring efforts 

related to climate refugia to prevent 

the extinction of this species. Finally, 

incorporating the impacts of climate 

change into IUCN Red List assessments 

could potentially alter the threat status 

of numerous endemic species (Trull 

et al. 2018). As a result, the research 

framework established in this study can 

be regarded as a valuable insight for 

evaluating other species listed in the Red 

List.
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