Geographic Range Shifts of Taiwan's Endemic Plant Species *Prunus transarisanensis* under Climate Change

氣候變遷下臺灣特有植物阿里山櫻花 (Prunus transarisanensis) 的地理分布變化

Jing-Yi Huang 黄靜宜

Taiwan Biodiversity Research Institute, Jiji, Nantou, Taiwan 農業部生物多樣性研究所 552005 南投縣集集鎮民生東路 1 號

Corresponding author: lily@tbri.gov.tw

通訊作者:lily@tbri.gov.tw

Abstract

Climate change is driving shifts in the species distribution, and its impact is particularly pronounced on high mountain plants sensitive to warming. *Prunus transarisanensis* is an endemic species found exclusively in the high-altitude regions of Taiwan, known for its ornamental cherry tree. In this study, species survey records and environmental data were integrated, and ensemble ecological niche modeling was employed to predict the current and future suitable habitats, as well as their spatiotemporal dynamics for *P. transarisanensis* under various

climate scenarios (shared socioeconomic pathways SSP126, SSP370, SSP585, 2071-2100). The model identified that a cool environment and moderate precipitation are key characteristics for suitable habitats of *P. transarisanensis*. In the analysis of the dynamics of suitable habitat distribution under three future scenarios, it was found that climate change will transform a significant portion of the currently suitable habitats into vulnerable states, regardless of the scenario. Even under the low emission scenario (SSP126), only a small portion of suitable habitat may persist as refugia. However, under the SSP370 or SSP585 scenarios, habitat degradation will be more severe, potentially leading to a high risk of extinction for the species. Based on the above results, this study proposes several suggestions to assist *P. transarisanensis* to adapt to climate change.

Key words: range dynamics, ensemble ecological niche modeling, shared socioeconomic pathways, extinction, conservation

摘要

氣候變遷正在驅使生物的地理分布發生改變,對暖化敏感的高山植物而言,其影響尤為顯著。阿里山櫻花 (Prunus transarisanensis) 分布於臺灣高海拔地區,是一種具觀賞價值的特有種櫻花。本研究整合物種調查及環境資料,運用集成生態棲位建模,預測當前和未來氣候情境 (共享社會經濟路徑 SSP126、SSP370、SSP585,2071-2100年)下,該物種之適宜生育地範圍及其時空分布動態。由所建構的集成模型可發現,冷涼環境與適度降水,是阿里山櫻花適宜生育地的關鍵特徵。未來 3 種情境下的適宜生育地分布動態分析結果顯示,無論何種情境,氣候變遷都將導致當前適宜生育地,大幅轉為脆弱狀態,即便是低碳排的 SSP126情境下,也僅能保存少部分適宜生育地,供作避難所,而在 SSP370 或 SSP585

情境下,生育地退化情況將更顯嚴峻,最終可能導致該物種面臨高度滅絕風險。 綜合上述推測結果,本研究最後也提出了幾點協助阿里山櫻花調適氣候變遷的建 議。

關鍵詞:分布動態、集成生態棲位建模、共享社會經濟路徑、滅絕、保育

Accepted: March 7, 2024 接受日期: 2024 年 3 月 7 日

Introduction

Climate change has been regarded as an unavoidable global phenomenon of this century and the most significant threat to Earth's biodiversity (Warren et al. 2013; Urban 2015). Within the next 50 years, approximately onethird of the world's species may face the threat of extinction due to this phenomenon (Román-Palacios and Wiens 2020). The complex terrain of high mountains fosters species diversity and endemism (Steinbauer et al. 2016; Noroozi et al. 2018). However, due to isolation effects, it also shapes the

rarity, scattered distribution, and narrow habitat range of mountain species. These mountain species are often more sensitive to climate change, especially plant communities (Thuiller et al. 2005; Adhikari et al. 2018). To adapt to the impacts of climate change, most mountain plant species are shifting towards higher altitudes, tracking new suitable climate zones (Jump et al. 2012; Kellner et al. 2023). This migration allows them to thrive in environments with optimal conditions for their growth and survival. Unfortunately, under the impact of global warming, as elevation

increases, not only does the temperature rise rapidly (Pepin et al. 2015; Lamprecht et al. 2018), but available areas also are significantly decreasing (Freeman et al. 2018). Furthermore, the natural barriers of high mountains restrict the dispersal of plants (Essl et al. 2011; Di Musciano et al. 2020; Chen et al. 2023), exacerbating the impact of climate change on mountain vegetation simultaneously.

Ecological niche modeling (ENM) predicts potential distribution ranges based on the correlation between species presence records and environmental variables. When combined with data on climate change scenarios, it enhances understanding of species responses to climate change and aids in the formulation of conservation strategies (Dhyani *et al.* 2021; Hoveka *et al.* 2022; Ceccarelli *et al.* 2022). ENM has developed various types of algorithms, such as general linear model (GLM) and multivariate adaptive regression splines

(MARS) for regression methods, as well as machine learning methods like boosted regression tree (BRT), maximum entropy (MaxEnt), and support vector machine (SVM). Recently, the "ensemble" ecological niche modeling (EENM), which integrates predictions from multiple models, has been continuously evolving. Compared to single models, EENM achieves consensus from multiple algorithms, mitigating the uncertainties in single-model predictions and leading to improved prediction accuracy (Araújo and New 2007; Marmion *et al.* 2009).

Taiwan has many high mountains, and is characterized by complex terrain and environments that have fostered rich and unique plant diversity. Statistical data from the past century indicates that Taiwan has experienced a temperature increase of approximately 1.4°C, which is significantly higher than the global average (Lu *et al.* 2012). Moreover, the rate of warming in high mountain areas has surpassed that of plains and lowlands

(Lin et al. 2015). Past studies have examined the effects of climate change on mountain vegetation composition and distribution. For example, Chou et al. (2011) predicted that future climate warming would drive changes in Taiwan's mountainous vegetation distribution, causing many plant species to migrate to higher altitudes. Jump et al. (2012) observed that the rise of the forest line is consistent with the warming trend. Kuo et al. (2022) suggested that some vulnerable species might face the threat of extinction due to climate change.

Prunus transarisanensis is an endemic species of Taiwan, taxonomically classified in the Rosaceae family and the Prunus genus. It is found at an elevation of approximately 2,500 m. Its appearance is that of a small shrub tree with whitish or light pink petals (Hsieh and Ohashi 1993). Due to its highly attractive appearance, this tree species is one of the important components of cherry blossom tourism in Taiwan,

significantly contributing to the income of the Alishan region each year (Liu et al. 2021). However, among various cherry tree species, the habitats of P. transarisanensis are situated at relatively higher altitudes, making them susceptible to the impacts of climate change. Consequently, this study assesses future threats to P transarisanensis based on species survey data and EENM. The investigation seeks to determine: (1) what are the major factors affecting species distribution; (2) how the suitable habitat transforms under different climate change scenarios; and (3) if it is highly vulnerable to the impacts of climate change, how can we assist this species in adapting?

Materials and methods Scope of study and species occurrence record

The geographical area covered by this study is the subtropical island of Taiwan, which has a land area of approximately 36,000 km². Its land is predominantly covered by forests, while urban and agricultural areas are mainly located in coastal plains. The island's terrain fluctuates greatly, consisting mostly of mountains and hills. The variation in altitude among the high mountains results in a range of complex climate types, including tropical, subtropical, temperate, and cold zones. Due to this diverse climate, a rich variety of vegetation ecosystems has formed, leading to the identification of 12 types of zonal forests and 9 types of azonal forests (Li *et al.* 2013).

The species occurrence records are derived from the ecological survey database (ecollect.forest.gov. tw). This dataset was systematically collected through island-wide surveys commissioned by the Forestry and Nature Conservation Agency (FANCA), with the collaboration of experts and scholars from various universities and research institutions. Only occurrence

records of the genus *Prunus*, totaling 13,301 records and including 86 records of the target species, from the years 1981 to 2010 were extracted to match the time interval of predictors. To maintain precise geographic coordinates, data with fewer than three decimal places were removed. Furthermore, spatial thinning was performed using the "spThin" package in the R version 4.1.3 environment (Aiello-Lammens et al. 2015) to reduce the impact of spatial autocorrelation and geographic sampling bias. In order to achieve the spatial resolution required for predictors, a minimum neighbor distance of at least 1 km was set between each occurrence record. After processing, there were 32 occurrence records of P. transarisanensis (Fig. 1a), along with 1,230 records of other species.

Environment variables

Climate, soil, and topography are commonly considered factors in assessing the habitat suitability of plant

species (Titeux et al. 2016; Hageer et al. 2017; Wan et al. 2019). Therefore, the predictors used encompass these three factors. This study did not incorporate land cover variables because all occurrence records of P. transarisanensis were located within forested areas according to the Ministry of the Interior's land use survey results (maps.nlsc.gov.tw). For the current climate scenario, 19 bioclimatic variables (BIO1-BIO19, Table S1) were extracted from the CHELSA V2.1 (chelsa-climate.org), with data spanning from 1981 to 2010 (Karger et al. 2017). Soil data were downloaded from the ISRIC-World Soil Information (isric.org) and included six soil variables: coarse fragments volumetric, soil texture fraction clay, soil texture fraction sand, soil texture fraction silt, soil pH, and cation exchange capacity. The digital elevation model was obtained from the Ministry of the Interior (data.gov.tw) and

processed using the Surface Tool in ArcGIS 10.8 (ESRI Inc.) software to generate variables such as slope and aspect. The spatial resolution of all layers was re-sampled to 1×1 km. To avoid collinearity, a selection was conducted according to Pearson correlation coefficients (< 0.7, Dormann et al. 2013). When two variables were highly correlated, the variable with the greatest ecological relevance to P. transarisanensis was chosen. The Pearson correlation analysis for environmental variables was performed using the R package "virtualspecies" (Leroy et al. 2016).

For future scenarios, CHELSA V2.1 also provides future climate data. Five global circulation models (GCMs, namely GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL) and three greenhouse gas emission scenarios (SSP126, SSP370, and SSP585) were utilized. Each scenario represents radiative forcing increasing

by 2.6, 7.0, and 8.5 Wm⁻² between 1750 and 2100, respectively. The bioclimatic data under these three scenarios for the 2071-2100 period was downloaded. Table S1 shows the mean values within the study area. The future bioclimatic variables generated by each of these five GCMs were used to construct models for *P. transarisanensis*, and the average probability was calculated as the final result to evaluate habitat suitability. Moreover, due to the relative stability of soil and topographical factors, it is assumed that the relevant variables remain constant.

Ensemble ecological niche modeling

The R package "sdm" (Naimi and Araújo 2016) was used to execute EENM to predict a suitable habitat for *P. transarisanensis*. Five algorithms were applied, including BRT, GLM, MARS, MaxEnt, and SVM. Since all algorithms required background data (pseudoabsence points), pseudo-absences could

only be selected from areas where other plant species had been recorded, a more objective approach to avoid considering under-sampled areas as unsuitable for *P. transarisanensis* (Ghisbain *et al.* 2020; Lu and Huang 2023). From the occurrence records of *P. transarisanensis*, 70% were randomly selected for the training dataset, while the remaining 30% were allocated to the testing dataset. The model performance of each algorithm was evaluated using bootstrap sampling on the training dataset. The 100 replicates were constructed using five algorithms, resulting in 500 models.

Model accuracy was evaluated using two metrics a threshold-independent statistic—the area under the receiver operating characteristic curve (AUC) (Fielding and Bell 1997) and a threshold-dependent statistic—the true skills statistic (TSS) (Allouche *et al.* 2006). The AUC was produced using the true positive rate (i.e., sensitivity) and the false positive rate from the classification

table. The TSS was determined using the sensitivity and the true negative rate (i.e., specificity). Higher values for these two metrics indicate better prediction accuracy of the model. The standard for excellent models was set as values of AUC and TSS higher than 0.9 and 0.8, respectively (González-Ferreras et al. 2016). The ensemble method was performed by retaining models with high predictive accuracy (TSS>0.8) and then calculating the weighted average based on their TSS values to generate an ensembled occurrence probability map of species. On the map, higher probabilities indicate a greater likelihood of suitable habitat for the species. The probability corresponding to the maximum TSS was considered the threshold (Liu et al. 2013) to convert the map into a binary map of suitable and unsuitable habitats. In addition, the importance of each predictive variable for model fitting was assessed using the "getVarImp" function of the "sdm" R package. The response

curve, revealing the relationship between the species occurrence probability and the variables, was generated using the "rcurve" function from the same R package.

Spatiotemporal dynamic analysis

According to the methodology outlined by Dai *et al.* (2019), changes in suitable habitats were assessed, and the generation of dynamic ranges was performed using the Combine Tool in ArcGIS as follows:

- a. Vulnerable habitat: Regions of habitat currently deemed suitable but predicted to become unsuitable under the future climate scenario.
- b. Increased suitable habitat:
 Regions of habitat currently considered
 unsuitable but predicted to become
 suitable under the future climate
 scenario.
- c. Climate refugia: Regions of habitat currently suitable and predicted to remain suitable under the future climate

scenario.

Results

Using a criterion of Pearson correlation coefficients < 0.7, the 28 predictive variables obtained earlier were narrowed down to 11 variables for constructing the prediction models. Table 1 shows the average AUC and TSS calculated from the test dataset using five algorithms, each with 100 replicates. In general, BRT, MaxEnt and SVM had good accuracy; of these, BRT showed the best performance, indicating

that these models had greater prediction power. Only 112 high-performance models (TSS>0.8) were retained for the following weighted averaging to ensure highly accurate predictions. As a result, this ensemble model was employed to predict suitable habitats for *P. transarisanensis*. The habitat distribution of the entire study area is shown in Fig. 1b. It is evident that the spatial pattern is confined to areas with relatively higher altitudes, estimated to cover a total area of 1,396 km².

Table 1 The area under the curve for the receiver operating characteristic (AUC) and true skill statistic (TSS) generated by five algorithms

表 1 5種演算法獲取之接收者操作特徵曲線下面積 (receiver operating characteristic, ROC) 與真實技能統計值 (true skill statistic, TSS)

Algorithm	AUCmean	SD	TSSmean	SD
Boosted regression	0.89	0.07	0.74	0.11
Generalized L model	0.86	0.06	0.69	0.11
Multivariate adaptive regression splines	0.84	0.10	0.67	0.13
Maximum entropy	0.89	0.06	0.72	0.10
Support vector machine	0.88	0.07	0.71	0.12

SD: standard deviation

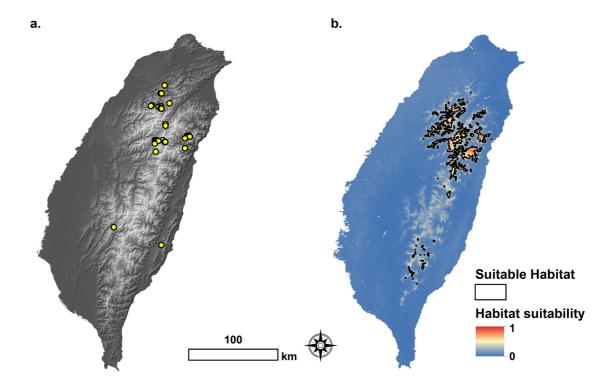


Fig. 1 (a) Occurrence records of *Prunus transarisanensis*, and a digital elevation model. Brighter colors indicate higher elevations; (b) predicted results according to the ensemble model.

圖 1 (a) 阿里山櫻花 (*Prunus transarisanensis*) 發生紀錄與研究區數值高程模型,亮度愈高代表海拔愈高; (b) 集成模型所推估之適宜生育地範圍。

Taking into consideration the importance of each variable in model fit, the variables with an importance > 10% include minimum temperature of coldest month (78.82%), precipitation of warmest quarter (22.63%), slope (10.66%) and soil texture fraction silt in percent (10.19%). The effects of

the remaining variables are relatively insignificant (Table 2). The climatic variables are clearly the most dominant, with the minimum temperature of the coldest month and precipitation of the warmest quarter being the two most important variables that are related to the species' occurrence in

Table 2 Estimates of importance (%) of the predictor variables to the ensemble model 表 2 各預測變項對集成模型的重要性 (%)

Variable	Importance	
Minimum temperature of coldest month	78.82	
Precipitation of the warmest quarter	22.63	
Slope	10.66	
Soil texture fraction silt in percent	10.19	
Precipitation of the coldest quarter	8.38	
Cation exchange capacity	8.24	
Mean diurnal range	7.51	
Aspect	7.02	
Temperature seasonality	5.93	
Soil pH	5.82	
Soil texture fraction sand in percent	4.45	

ensemble prediction.

The primary contributing variables from ensemble prediction indicate that the probability of occurrence was highest at the lowest minimum temperature of the coldest month and precipitation of the warmest quarter (Fig. 2). The peak value of the former variable occurred below 1°C, while that of the latter variable occurred around 700 mm. Analysis of the response curves above indicates that *P. transarisanensis* prefers a cool

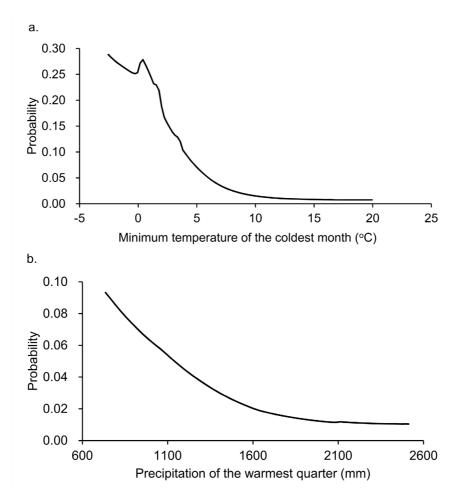


Fig. 2 Response curves of the primary contribution variables based on the ensemble prediction. (a) minimum temperature of the coldest month; (b) precipitation of the warmest quarter.

圖 2 阿里山櫻花 (*Prunus transarisanensis*) 對集成模型主要變項之反應曲線, (a) 最冷月最低溫; (b) 最暖季降水量。

environment and requires moderate precipitation.

From the current to the future, the habitat dynamic range of P. transarisanensis is projected. Overall, in the future, only two types of habitats will remain: climate refugia and vulnerable habitats, with the majority of the area occupied by vulnerable habitats. Under the low-emission SSP126 scenario, only a small amount of suitable habitat, estimated at approximately 355 km², can be maintained as refugia. Under the more severe warming scenarios of SSP370 and SSP585, the majority of suitable habitats are predicted to transition into vulnerable habitats, and climate refugia virtually cease to exist (Fig. 3).

Discussion

Due to its significant contribution to performance improvement, EENM is one of the most commonly used tools for predicting the impact of climate change on suitable habitats of species (Yun *et al.*

2017; Jung et al. 2023). The ensemble model constructed in this study was employed to predict the distribution of P. transarisanensis. Among the single algorithms, BRT, MaxEnt, and SVM were found to perform exceptionally well. A commonality among them is that they all belong to machine learning algorithms. Compared with the two linear models of GLM and MARS, machine learning algorithms are able to process non-linear relationships between predictors (Recknagel 2001). Therefore, this might be the reason why the models fitted by these three algorithms showed relatively better performance, as stated above. The result is similar to previous investigations on other plant species (Rahmanian et al. 2021; Sarma et al. 2022). To maintain the stability of the final model, only high-performance models are retained for the ensemble. ensuring that subsequent scenario simulations and conservation planning are built on a robust scientific foundation.

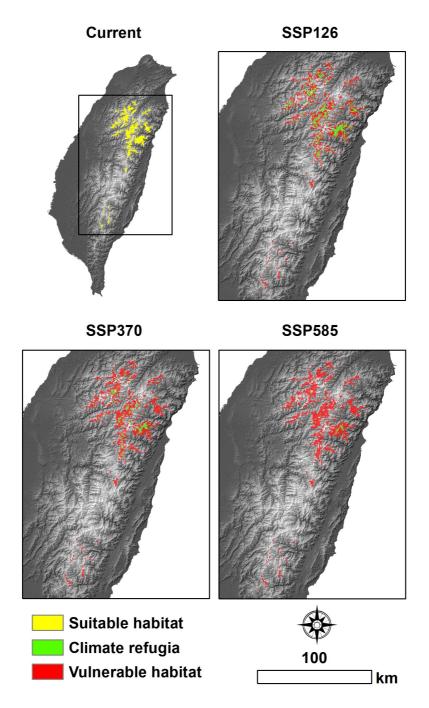


Fig. 3 The dynamic range of suitable habitat for *Prunus transarisanensis*. The upper left panel shows the current distribution, while the upper-right, bottom-left and bottom-right panels represent the SSP126, SSP370, and SSP585 emission scenarios, respectively, for the period of 2071-2100.

圖 3 阿里山櫻花 ($Prumus\ transarisanensis$) 的適宜生育地分布動態。左上圖為當前潛在分布,右上、左下與右下圖分別表示直至 2071~2100 年間,SSP126、SSP370 與 SSP585 情境下的潛在分布變化。

Prunus species are highly sensitive to temperature, which is one of the primary factors regulating their flowering stage. Similar to annual or biennial plants, *Prunus* species undergo a vernalization process. This involves accumulating a certain amount of chilling during endodormancy and heat during ecodormancy to ensure proper flowering in spring (Luedeling et al. 2013; Fadón et al. 2015). Therefore, maintaining a certain low-temperature level during the winter is one of the key prerequisites for their subsequent growth and development cycle (Szalay et al. 2010; Luedeling et al. 2013; Benmoussa et al. 2017; Zhang et al. 2023). The model fitting in this study indirectly supports this perspective. The ensemble model indicated that among the temperature-related variables, the minimum temperature of the coldest month strongly influenced the prediction of suitable habitat for *P. transarisanensis*. Habitats with a certain level of cold during the coldest month are relatively

suitable for this species. After sufficient chill accumulation, the reproductive activity starts with inflorescence emergence as pointed out by Sakar et al. (2019). On the contrary, relatively high temperatures during winter may affect the tolerance limit to flowering, disrupting their phenological cycles and resulting in significant negative consequences. Additionally, a peak value is observed in the curve around 1°C, likely attributed to other variables, though it does not alter the overall trend interpretation. Besides temperature, precipitation in mountain areas is also an important factor, influencing not only plant growth but also genetic variations (Chaves et al. 2003; Manel et al. 2012). This study suggests that moderate precipitation (approximately below 1,000 mm) during the warm season is favorable for P. transarisanensis. Conversely, excessive precipitation may lead to adverse outcomes.

As high mountain plants have

narrow elevation tolerance, they are more exposed to a greater risk of habitat loss and local extinction due to climate change than species distributed at lower elevations (Guisan and Theurillat 2000; Engler et al. 2011). In this study, the species distribution predictions indicate that P. transarisanensis is found in the mountainous areas on the northern side of Taiwan, which have characteristics similar to temperate climate zones (Li et al. 2015). However, according to past climate observations, Taiwan has experienced increasing temperatures and continuous rise in extreme rainfall over the past few decades (Hsu and Chen 2002; Shiu et al. 2009; Jump et al. 2012; Tung et al. 2022). Therefore, the climate in Taiwan is becoming increasingly less favorable for *P. transarisanensis*, which prefers cooler and moderate precipitation environments in the mountains. This also suggests that the suitable habitat of this species is likely undergoing qualitative shifts due to climate change.

As for future projections, the results of most GCMs agree that Taiwan is highly susceptible to extreme temperatures. For instance, heatwaves are expected to intensify, becoming more frequent and prolonged. Conversely, extremely cold days are gradually disappearing (Tsai et al. 2023). Regarding changes in spatial patterns of temperature, the warming is more significant in high mountains than in plains, profoundly impacting ecosystems and species distributions (Lin et al. 2015). Additionally, precipitation distribution in various regions is significantly uneven, leading to increasing drought and flood risks (Huang et al. 2012). According to the analysis results of this study, the majority of suitable habitats for P. transarisanensis are projected to transition into vulnerable habitats due to the impact of climate change. Even under the low emission scenario (SSP126), the available area serving as climate refugia is constrained. Under the more severe emission scenarios of SSP370 and SSP585, the predicted degradation of suitable habitats is expected to be more severe, potentially leading to a high risk of extinction for this species.

In order to adapt to future climate change, this study proposes several recommendations for the conservation of P. transarisanensis. Firstly, in the current conservation assessment system in Taiwan at the regional level and according to the International Union for Conservation of Nature (IUCN) criteria, this species is classified as "Near Threatened," falling short of the threatened status (Editorial Committee of the Red List of Taiwan Plants 2017; IUCN 2022). However, it is important to emphasize that it is a "vulnerable species" susceptible to the impacts of climate change, which requires increased conservation efforts. Furthermore, given the potential vulnerability of habitats, immediate priority should be given to these areas for ex situ conservation. Due

to the well-established conservation network in the mountainous areas of Taiwan (Tang et al. 2006), there is limited space available for adjusting nature reserves to maintain suitable habitats. Therefore, it is necessary to enhance long-term monitoring efforts related to climate refugia to prevent the extinction of this species. Finally, incorporating the impacts of climate change into IUCN Red List assessments could potentially alter the threat status of numerous endemic species (Trull et al. 2018). As a result, the research framework established in this study can be regarded as a valuable insight for evaluating other species listed in the Red List.

Literature Cited

Adhikari, P., M. S. Shin, J. Y. Jeon, H. W. Kim, S. Hong and C. Seo. 2018. Potential impact of climate change on the species richness of subalpine plant species in the

- mountain national parks of South Korea. Journal of Ecology and Environment 42: 1-10.
- Aiello-Lammens, M. E., R. A. Boria,
 A. Radosavljevic, B. Vilela and
 R. P. Anderson. 2015. spThin: an
 R package for spatial thinning of
 species occurrence records for use in
 ecological niche models. Ecography
 38: 541-545.
- Allouche, O., A. Tsoar and R. Kadmon.
 2006. Assessing the accuracy
 of species distribution models:
 prevalence, kappa and the true skill
 statistic (TSS). Journal of Applied
 Ecology 43: 1223-1232.
- Araújo, M. B. and M. New. 2007.

 Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22: 42-47.
- Benmoussa, H., M. Ghrab, M. B.

 Mimoun and E. Luedeling. 2017.

 Chilling and heat requirements
 for local and foreign almond

 (Prunus dulcis Mill.) cultivars in

- a warm Mediterranean location based on 30 years of phenology records. Agricultural and Forest Meteorology 239: 34-46.
- Ceccarelli, V., M. Ekué, T. Fremout, H. Gaisberger, C. Kettle, H. Taedoumg, H. Wouters, E. Vanuytrecht, K. De Ridder and E. Thomas. 2022.

 Vulnerability mapping of 100 priority tree species in Central Africa to guide conservation and restoration efforts. Biological Conservation 270: 109554.
- Chaves, M. M., J. P. Maroco and J. S. Pereira. 2003. Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology 30: 239-264.
- Chen, S. Y., C. C. Huang, Y. T. Cheng, C. C. Wang, C. Y. Li, I. L. Lai and K. H. Hung. 2023. Effect of geographic isolation on genetic variation and population structure of *Euphrasia nankotaizanensis*, a threatened endemic alpine herb in

Taiwan. Heliyon 9: e14228.

Chou, C. H., T. J. Huang, Y. P. Lee,
C. Y. Chen, T. W. Hsu and C.
H. Chen. 2011. Diversity of the alpine vegetation in central Taiwan is affected by climate change based on a century of floristic inventories. Botanical Studies 52: 503-516.

Dai, Y., C. E. Hacker, Y. Zhang, W.
Li, Y. Zhang, H. Liu, J. Zhang,
Y. Ji, Y. Xue and D. Li. 2019.
Identifying climate refugia and its
potential impact on Tibetan brown
bear (*Ursus arctos pruinosus*) in
Sanjiangyuan National Park, China.
Ecology and Evolution 9: 13278-13293.

Dhyani, A., R. Kadaverugu, B. P.

Nautiyal and M. C. Nautiyal. 2021.

Predicting the potential distribution
of a critically endangered medicinal
plant Lilium polyphyllum in
Indian Western Himalayan
Region. Regional Environmental

Change 21: 1-11.

Di Musciano, M., V. Di Cecco, F. Bartolucci, F. Conti, A. R. Frattaroli and L. Di Martino. 2020. Dispersal ability of threatened species affects future distributions. Plant Ecology 221: 265-281.

Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, J. R. G. Marquéz, B. Gruber, B. Lafourcade, P. J. Leitão, T. Münkemüller, C. McClean, P. E. Osborne, B. Reineking, B. Schröder, A. K. Skidmore, D. Zurell and S. Lautenbach. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27-46.

Editorial Committee of the Red List of Taiwan Plants. 2017. The Red List of Vascular Plants of Taiwan, 2017. Endemic Species Research Institute, Forestry Bureau, Council of Agriculture, Executive Yuan

- and Taiwan Society of Plant Systematics, Taipei, Taiwan.
- Engler, R., C. F. Randin, W. Thuiller, S. Dullinger, N. E. Zimmermann, N. E. Araújo, P. B. Pearman, G. Lay, C. Piedallu, C. H. Albert, P. Choler, G. Colder, X. De Lamo, T. Dirnböck, J. C. Gégout, D. Gómez-García, J. A. Grytnes, E. Heegaard, F. Høistad, D. Nogués-Bravo, S. Normand, M. Puşcaş, M. T. Sebastià, A. Stanisci, J. P. Theurillat, M. R. Trivedi, P. Vittoz and A. Guisan. 2011. Twenty-first century climate change threatens mountain flora unequally across Europe. Global Change Biology 17: 2330-2341.
- Essl, F., S. Dullinger, C. Plutzar, W. Willner and W. Rabitsch. 2011. Imprints of glacial history and current environment on correlations between endemic plant and invertebrate species richness. Journal of Biogeography 38: 604-614.

- Fadón, E., M. Herrero and J. Rodrigo.
 2015. Flower bud dormancy in
 Prunus species. pp. 123-136. *In*:
 J. V. Anderson (ed.). Advances in
 Plant Dormancy. Springer-Verlag,
 Heidelberg, Germany.
- Fielding, A. H. and J. F. Bell. 1997.

 A review of methods for the assessment of prediction errors in conservation presence/
 absence models. Environmental

 Conservation 24: 38-49.
- Freeman, B. G., J. A. Lee-Yaw, J. M. Sunday and A. L. Hargreaves. 2018. Expanding, shifting and shrinking: The impact of global warming on species' elevational distributions. Global Ecology and Biogeography 27: 1268-1276.
- Ghisbain, G., D. Michez, L. Marshall,
 P. Rasmont and S. Dellicour. 2020.
 Wildlife conservation strategies
 should incorporate both taxon
 identity and geographical contextfurther evidence with bumblebees.

- Diversity and Distributions 26: 1741-1751.
- González-Ferreras, A. M., J. Barquín and F. J. Peñas. 2016. Integration of habitat models to predict fish distributions in several watersheds of Northern Spain. Journal of Applied Ichthyology 32: 204-216.
- Guisan, A. and J. P. Theurillat.

 2000. Assessing alpine plant
 vulnerability to climate change: a
 modeling perspective. Integrated
 Assessment 1: 307-320.
- Hageer, Y., M. Esperón-Rodríguez, J. B. Baumgartner and L. J. Beaumont. 2017. Climate, soil or both? Which variables are better predictors of the distributions of Australian shrub species? PeerJ 5: e3446.
- Hoveka, L. N., M. van der Bank and T. J. Davies. 2022. Winners and losers in a changing climate: how will protected areas conserve red list species under climate change? Diversity and

- Distributions 28: 782-792.
- Hsieh, C. F. and H. Ohashi. 1993. *Prunus*L. pp. 96-104. *In*: T. C. Huang (ed.).
 Flora of Taiwan, 2nd edition, vol. 3.
 Editorial Committee of the Flora of Taiwan, Taipei, Taiwan.
- Hsu, H. H. and C. T. Chen. 2002.

 Observed and projected climate change in Taiwan. Meteorology and Atmospheric Physics 79: 87-104.
- Huang, W. C., Y. Chiang, R. Y. Wu, J.

 L. Lee and S. H. Lin. 2012. The impact of climate change on rainfall frequency in Taiwan. Terrestrial,

 Atmospheric and Oceanic Sciences 23: 553-564.
- International Union for Conservation of Nature, IUCN. 2022. The IUCN Red List of Threatened Species. Version 2022-2, https://www.iucnredlist.org.
- Jump, A. S., T. J. Huang and C. H. Chou. 2012. Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35: 204-

210.

- Jung, J. B., G. E. Park, H. J. Kim, J. H. Huh and Y. Um. 2023. Predicting the habitat suitability for *Angelica gigas* medicinal herb using an ensemble species distribution model. Forests 14: 592.
- Karger, D. N., O. Conrad, J. Böhner, T.
 Kawohl, H. Kreft, R. W. Soria-Auza,
 N. E. Zimmermann, H. P. Linder
 and M. Kessler. 2017. Climatologies
 at high resolution for the earth's
 land surface areas. Scientific Data 4:
 1-20.
- Kellner, J. R., J. Kendrick and D. F. Sax. 2023. High-velocity upward shifts in vegetation are ubiquitous in mountains of western North America. PLOS Climate 2: e0000071.
- Kuo, C. C., Y. C. Liu, Y. Su, H. Y. Liu and C. T. Lin. 2022. Responses of alpine summit vegetation under climate change in the transition zone between subtropical and tropical

- humid environment. Scientific Reports 12: 13352.
- Lamprecht, A., P. R. Semenchuk, K. Steinbauer, M. Winkler and H. Pauli. 2018. Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. New Phytologist 220: 447-459.
- Leroy, B., C. N. Meynard, C. Bellard and F. Courchamp. 2016. Virtualspecies, an R package to generate virtual species distributions. Ecography 39: 599-607.
- Li, C. F., D. Zelený, M. Chytrý, M. Y. Chen, T. Y. Chen, C. R. Chiou, Y. J. Hsia, H. Y. Liu, S. Z. Yang, C. L. Yeh, J. C. Wang, C. F. Yu, Y. J. Lai, K. Guo and C. F Hsieh. 2015. Chamaecyparis montane cloud forest in Taiwan: ecology and vegetation classification. Ecological Research 30: 771-791.
- Li, C. F., M. Chytrý, D. Zelený, M. Y. Chen, T. Y. Chen, C. R. Chiou, Y.

- J. Hsia, H. Y. Liu, S. Z. Yang, C. L. Yeh, J. C. Wang, C. F. Yu, Y. J. Lai, W. C. Chao and C. F. Hsieh. 2013. Classification of Taiwan forest vegetation. Applied Vegetation Science 16: 698-719.
- Lin, C. Y., Y. J. Chua, Y. F. Sheng, H. H. Hsu, C. T. Cheng and Y. Y. Lin. 2015. Altitudinal and latitudinal dependence of future warming in Taiwan simulated by WRF nested with ECHAM5/MPIOM. International Journal of Climatology 35: 1800-1809.
- Liu, C., M. White and G. Newell. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography 40: 778-789.
- Liu, W. Y., B. S. Fang and C. M. Hsieh. 2021. Evaluating the recreation value of Alishan National Forest recreation area in Taiwan. Forests 12: 1245.
- Lu, M. L. and J. Y. Huang. 2023.

- Predicting negative effects of climate change on Taiwan's endemic Bumblebee *Bombus formosellus*. Journal of Insect Conservation 27: 193-203.
- Lu, M. M., Y. M. Cho, S. Y. Lee, C. T. Lee and Y. C. Lin. 2012. Climate Variations in Taiwan during 1911-2009. Atmospheric Sciences 40: 297-321. (in Chinese)
- Luedeling, E., A. Kunz and M. M. Blanke. 2013. Identification of chilling and heat requirements of cherry trees—a statistical approach. International Journal of Biometeorology 57: 679-689.
- Manel, S., F. Gugerli, W. Thuiller, N. Alvarez, P. Legendre, R. Holderegger, L. Gielly, P. Taberlet and I. Consortium. 2012. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Molecular Ecology 21: 3729-3738.

- Marmion, M., M. Parviainen, M. Luoto, R. K. Heikkinen and W. Thuiller. 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15: 59-69.
- Naimi, B. and M. B. Araújo. 2016. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39: 368-375.
- Noroozi, J., A. Talebi, M.

 Doostmohammadi, S. B. Rumpf, H.

 P. Linder and G. M. Schneeweiss.

 2018. Hotspots within a global
 biodiversity hotspot-areas of
 endemism are associated with
 high mountain ranges. Scientific
 Reports 8: 10345.
- Pepin, N., R. S. Bradley, H. F. Diaz, M. Baraer, E. B. Caceres, N. Forsythe, H. Fowler, G. Greenwood, M. Z. Hashmi, X. D. Liu, J. R. Miller, L. Ning, A. Ohmura, E. Palazzi, I. Rangwala, W. Schöner, I. Severskiy, M. Shahgedanova, M. B. Wang,

- S. N. Williamson and D. Q. Yang. 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5: 424-430.
- Rahmanian, S., H. R. Pourghasemi,
 S. Pouyan and S. Karami. 2021.
 Habitat potential modelling and
 mapping of Teucrium polium
 using machine learning techniques.
 Environmental Monitoring and
 Assessment 193 1-21.
- Recknagel, F. 2001. Applications of machine learning to ecological modelling. Ecological Modelling 146: 303-310.
- Román-Palacios, C. and J. J. Wiens.

 2020. Recent responses to climate change reveal the drivers of species extinction and survival. Proceedings of the National Academy of Sciences 117: 4211-4217.
- Sakar, E. H., M. E. Yamani, A.Boussakouran and Y. Rharrabti.2019. Codification and descriptionof almond (*Prunus dulcis*)

- vegetative and reproductive phenology according to the extended BBCH scale. Scientia Horticulturae 247: 224-234.
- Sarma, K., S. J. Roy, B. Kalita, P. S. Baruah and A. Bawri. 2022. Habitat suitability of *Gymnocladus assamicus* A critically endangered plant of Arunachal Pradesh, India using machine learning and statistical modeling. Acta Ecologica Sinica 42: 398-406.
- Shiu, C. J., S. C. Liu and J. P. Chen. 2009. Diurnally asymmetric trends of temperature, humidity, and precipitation in Taiwan. Journal of Climate 22: 5635-5649.
- Steinbauer, M. J., R. Field, J. A. Grytnes, P. Trigas, C. Ah-Peng, F. Attorre, H. J. B. Birks, P. A. V. Borges, P. Cardoso, C. H. Chou, M. De Sanctis, M. M. de Sequeira, M. C. Duarte, R. B. Elias, J. M. Fernández-Palacios, R. Gabriel, R. E. Gereau, R. G. Gillespie, J.

- Greimler, D. E. V. Harter, T. J. Huang, S. D. H. Irl, D. Jeanmonod, A. Jentsch, A. S. Jump, C. Kueffer, S. Nogué, R. Otto, O. Price, M. M. Romeiras, D. Strasberg, T. Stuessy, J. C. Svenning, O. R. Vetaas and C. Beierkuhnlein. 2016. Topographydriven isolation, speciation and a global increase of endemism with elevation. Global Ecology and Biogeography 25: 1097-1107.
- Szalay, L., B. Timon, S. Németh, J. Papp and M. Tóth. 2010. Hardening and dehardening of peach flower buds. HortScience 45: 761-765.
- Tang, Z., Z. Wang, C. Zheng and J. Fang. 2006. Biodiversity in China's mountains. Frontiers in Ecology and the Environment 4: 347-352.
- Thuiller, W., S. Lavorel, M. B. Araújo, M. T. Sykes and I. C. Prentice. 2005.

 Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences 102: 8245-8250.

- Titeux, N., K. Henle, J. B. Mihoub,
 A. Regos, I. R. Geijzendorffer,
 W. Cramer, P. H. Verburg and
 L. Brotons. 2016. Biodiversity
 scenarios neglect future land-use
 changes. Global Change Biology
 22: 2505-2515.
- Trull, N., M. Böhm and J. Carr. 2018.

 Patterns and biases of climate change threats in the IUCN Red

 List. Conservation Biology 32: 135
 147.
- Tsai, I. C., P. R. Hsieh, C. T. Cheng, Y. S. Tung, L. Y. Lin and H. H. Hsu. 2023. Impacts of 2 and 4°C global warmings on extreme temperatures in Taiwan. International Journal of Climatology 43: 702-719.
- Tung, Y. S., C. Y. Wang, S. P. Weng and C. D. Yang. 2022. Extreme index trends of daily gridded rainfall dataset (1960–2017) in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 33: 8.
- Urban, M. C. 2015. Accelerating

- extinction risk from climate change. Science 348: 571-573.
- Wan, J. Z., J. H. Yu, G. J. Yin, Z. M. Song, D. X. Wei and C. J. Wang. 2019. Effects of soil properties on the spatial distribution of forest vegetation across China. Global Ecology and Conservation 18: e00635.
- Warren, R., J. VanDerWal, J. Price, J. A.
 Welbergen, I. Atkinson, J. Ramirez-Villegas, T. J. Osborn, A. Jarvis, L.
 P. Shoo, S. E. Williams and J. Lowe.
 2013. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature
 Climate Change 3: 678-682.
- Yun, K., J. Hsiao, M. P. Jung, I. T. Choi,
 D. M. Glenn, K. M. Shim and S.
 H. Kim. 2017. Can a multi-model ensemble improve phenology predictions for climate change studies? Ecological Modelling 362: 54-64.
- Zhang, Y., K. Ma and Q. Li. 2023.

Research on chilling requirements and physiological mechanisms of *Prunus mume*. Horticulturae 9: 603.