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Geographic Range Shifts of Taiwan’s Endemic Plant
Species Prunus transarisanensis under Climate
Change
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Abstract

Climate change is driving shifts in the species distribution, and its impact is
particularly pronounced on high mountain plants sensitive to warming. Prunus
transarisanensis is an endemic species found exclusively in the high-altitude
regions of Taiwan, known for its ornamental cherry tree. In this study, species
survey records and environmental data were integrated, and ensemble ecological
niche modeling was employed to predict the current and future suitable habitats,

as well as their spatiotemporal dynamics for P. transarisanensis under various
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climate scenarios (shared socioeconomic pathways SSP126, SSP370, SSP58S5,
2071-2100). The model identified that a cool environment and moderate precip-
itation are key characteristics for suitable habitats of P. transarisanensis. In the
analysis of the dynamics of suitable habitat distribution under three future sce-
narios, it was found that climate change will transform a significant portion of
the currently suitable habitats into vulnerable states, regardless of the scenario.
Even under the low emission scenario (SSP126), only a small portion of suitable
habitat may persist as refugia. However, under the SSP370 or SSP585 scenarios,
habitat degradation will be more severe, potentially leading to a high risk of ex-
tinction for the species. Based on the above results, this study proposes several

suggestions to assist P. transarisanensis to adapt to climate change.
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Introduction

Climate change has been regarded
as an unavoidable global phenomenon
of this century and the most significant
threat to Earth’s biodiversity (Warren
et al. 2013; Urban 2015). Within the
next 50 years, approximately one-
third of the world’s species may face
the threat of extinction due to this
phenomenon (Roman-Palacios and
Wiens 2020). The complex terrain of
high mountains fosters species diversity
and endemism (Steinbauer et al. 2016;
Noroozi et al. 2018). However, due

to isolation effects, it also shapes the
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rarity, scattered distribution, and narrow
habitat range of mountain species.
These mountain species are often more
sensitive to climate change, especially
plant communities (Thuiller et al.
2005; Adhikari et al. 2018). To adapt
to the impacts of climate change, most
mountain plant species are shifting
towards higher altitudes, tracking new
suitable climate zones (Jump et al. 2012;
Kellner et al. 2023). This migration
allows them to thrive in environments
with optimal conditions for their growth
and survival. Unfortunately, under the

impact of global warming, as elevation



increases, not only does the temperature
rise rapidly (Pepin et al. 2015;
Lamprecht et al. 2018), but available
areas also are significantly decreasing
(Freeman et al. 2018). Furthermore,
the natural barriers of high mountains
restrict the dispersal of plants (Essl et
al. 2011; Di Musciano et al. 2020; Chen
et al. 2023), exacerbating the impact of
climate change on mountain vegetation
simultaneously.

Ecological niche modeling (ENM)
predicts potential distribution ranges
based on the correlation between species
presence records and environmental
variables. When combined with data on
climate change scenarios, it enhances
understanding of species responses
to climate change and aids in the
formulation of conservation strategies
(Dhyani et al. 2021; Hoveka et al.
2022; Ceccarelli et al. 2022). ENM has
developed various types of algorithms,
such as general linear model (GLM) and

multivariate adaptive regression splines
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(MARS) for regression methods, as well
as machine learning methods like boosted
regression tree (BRT), maximum entropy
(MaxEnt), and support vector machine
(SVM). Recently, the “ensemble”
ecological niche modeling (EENM),
which integrates predictions from
multiple models, has been continuously
evolving. Compared to single models,
EENM achieves consensus from multiple
algorithms, mitigating the uncertainties
in single-model predictions and leading
to improved prediction accuracy (Aratjo
and New 2007; Marmion et al. 2009).
Taiwan has many high mountains,
and is characterized by complex terrain
and environments that have fostered rich
and unique plant diversity. Statistical
data from the past century indicates that
Taiwan has experienced a temperature
increase of approximately 1.4°C, which
is significantly higher than the global
average (Lu ef al. 2012). Moreover, the
rate of warming in high mountain areas

has surpassed that of plains and lowlands
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(Lin ef al. 2015). Past studies have
examined the effects of climate change
on mountain vegetation composition
and distribution. For example, Chou
et al. (2011) predicted that future
climate warming would drive changes
in Taiwan’s mountainous vegetation
distribution, causing many plant species
to migrate to higher altitudes. Jump et al.
(2012) observed that the rise of the forest
line is consistent with the warming trend.
Kuo et al. (2022) suggested that some
vulnerable species might face the threat
of extinction due to climate change.
Prunus transarisanensis is an endemic
species of Taiwan, taxonomically
classified in the Rosaceae family and
the Prunus genus. It is found at an
elevation of approximately 2,500 m. Its
appearance is that of a small shrub tree
with whitish or light pink petals (Hsieh
and Ohashi 1993). Due to its highly
attractive appearance, this tree species
is one of the important components

of cherry blossom tourism in Taiwan,

significantly contributing to the income
of the Alishan region each year (Liu
et al. 2021). However, among various
cherry tree species, the habitats of P.
transarisanensis are situated at relatively
higher altitudes, making them susceptible
to the impacts of climate change.
Consequently, this study assesses future
threats to P. transarisanensis based on
species survey data and EENM. The
investigation seeks to determine: (1)
what are the major factors affecting
species distribution; (2) how the suitable
habitat transforms under different climate
change scenarios; and (3) if it is highly
vulnerable to the impacts of climate
change, how can we assist this species in

adapting?

Materials and methods

Scope of study and species occur-
rence record

The geographical area covered
by this study is the subtropical island

of Taiwan, which has a land area of



approximately 36,000 km®. Its land is
predominantly covered by forests, while
urban and agricultural areas are mainly
located in coastal plains. The island’s
terrain fluctuates greatly, consisting
mostly of mountains and hills. The
variation in altitude among the high
mountains results in a range of complex
climate types, including tropical,
subtropical, temperate, and cold zones.
Due to this diverse climate, a rich variety
of vegetation ecosystems has formed,
leading to the identification of 12 types
of zonal forests and 9 types of azonal
forests (Li et al. 2013).

The species occurrence records
are derived from the ecological
survey database (ecollect.forest.gov.
tw). This dataset was systematically
collected through island-wide surveys
commissioned by the Forestry and
Nature Conservation Agency (FANCA),
with the collaboration of experts and
scholars from various universities and

research institutions. Only occurrence
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records of the genus Prunus, totaling
13,301 records and including 86 records
of the target species, from the years 1981
to 2010 were extracted to match the time
interval of predictors. To maintain precise
geographic coordinates, data with fewer
than three decimal places were removed.
Furthermore, spatial thinning was
performed using the “spThin” package
in the R version 4.1.3 environment
(Aiello-Lammens ef al. 2015) to reduce
the impact of spatial autocorrelation and
geographic sampling bias. In order to
achieve the spatial resolution required
for predictors, a minimum neighbor
distance of at least 1 km was set between
each occurrence record. After processing,
there were 32 occurrence records of P.
transarisanensis (Fig. 1a), along with

1,230 records of other species.

Environment variables
Climate, soil, and topography are
commonly considered factors in as-

sessing the habitat suitability of plant
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species (Titeux et al. 2016; Hageer
et al. 2017; Wan et al. 2019). There-
fore, the predictors used encompass
these three factors. This study did
not incorporate land cover variables
because all occurrence records of P.
transarisanensis were located within
forested areas according to the Min-
istry of the Interior’s land use survey
results (maps.nlsc.gov.tw). For the
current climate scenario, 19 biocli-
matic variables (BIO1-BIO19, Table
S1) were extracted from the CHELSA
V2.1 (chelsa-climate.org), with data
spanning from 1981 to 2010 (Karger
et al. 2017). Soil data were down-
loaded from the ISRIC-World Soil
Information (isric.org) and included
six soil variables: coarse fragments
volumetric, soil texture fraction clay,
soil texture fraction sand, soil texture
fraction silt, soil pH, and cation ex-
change capacity. The digital elevation
model was obtained from the Minis-

try of the Interior (data.gov.tw) and

processed using the Surface Tool in
ArcGIS 10.8 (ESRI Inc.) software to
generate variables such as slope and
aspect. The spatial resolution of all
layers was re-sampled to 1 x 1 km.
To avoid collinearity, a selection was
conducted according to Pearson cor-
relation coefficients (< 0.7, Dormann
et al. 2013). When two variables were
highly correlated, the variable with
the greatest ecological relevance to
P transarisanensis was chosen. The
Pearson correlation analysis for en-
vironmental variables was performed
using the R package “virtualspecies”
(Leroy et al. 2016).

For future scenarios, CHELSA
V2.1 also provides future climate data.
Five global circulation models (GCMs,
namely GFDL-ESM4, IPSL-CM6A-LR,
MPI-ESM1-2-HR, MRI-ESM2-0, and
UKESM1-0-LL) and three greenhouse
gas emission scenarios (SSP126, SSP370,
and SSP585) were utilized. Each scenario

represents radiative forcing increasing



by 2.6, 7.0, and 8.5 Wm™ between 1750
and 2100, respectively. The bioclimatic
data under these three scenarios for the
2071-2100 period was downloaded.
Table S1 shows the mean values within
the study area. The future bioclimatic
variables generated by each of these five
GCMs were used to construct models
for P. transarisanensis, and the average
probability was calculated as the final
result to evaluate habitat suitability.
Moreover, due to the relative stability
of soil and topographical factors, it
is assumed that the relevant variables

remain constant.

Ensemble ecological niche modeling

The R package “sdm” (Naimi
and Aratjo 2016) was used to execute
EENM to predict a suitable habitat for P
transarisanensis. Five algorithms were
applied, including BRT, GLM, MARS,
MaxEnt, and SVM. Since all algorithms
required background data (pseudo-

absence points), pseudo-absences could
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only be selected from areas where other
plant species had been recorded, a more
objective approach to avoid considering
under-sampled areas as unsuitable for
P. transarisanensis (Ghisbain et al.
2020; Lu and Huang 2023). From the
occurrence records of P. transarisanensis,
70% were randomly selected for the
training dataset, while the remaining
30% were allocated to the testing
dataset. The model performance of each
algorithm was evaluated using bootstrap
sampling on the training dataset. The 100
replicates were constructed using five
algorithms, resulting in 500 models.
Model accuracy was evaluated using
two metrics a threshold-independent
statistic—the area under the receiver
operating characteristic curve (AUC)
(Fielding and Bell 1997) and a threshold-
dependent statistic—the true skills
statistic (TSS) (Allouche et al. 2006).
The AUC was produced using the true
positive rate (i.e., sensitivity) and the

false positive rate from the classification
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table. The TSS was determined using
the sensitivity and the true negative rate
(i.e., specificity). Higher values for these
two metrics indicate better prediction
accuracy of the model. The standard
for excellent models was set as values
of AUC and TSS higher than 0.9 and
0.8, respectively (Gonzélez-Ferreras et
al. 2016). The ensemble method was
performed by retaining models with
high predictive accuracy (TSS>0.8) and
then calculating the weighted average
based on their TSS values to generate an
ensembled occurrence probability map of
species. On the map, higher probabilities
indicate a greater likelihood of suitable
habitat for the species. The probability
corresponding to the maximum TSS
was considered the threshold (Liu et al.
2013) to convert the map into a binary
map of suitable and unsuitable habitats.
In addition, the importance of each
predictive variable for model fitting was
assessed using the “getVarlmp” function

of the “sdm” R package. The response

curve, revealing the relationship between
the species occurrence probability and
the variables, was generated using the
“rcurve” function from the same R

package.

Spatiotemporal dynamic analysis

According to the methodology
outlined by Dai ef al. (2019), changes
in suitable habitats were assessed, and
the generation of dynamic ranges was
performed using the Combine Tool in
ArcGIS as follows:

a. Vulnerable habitat: Regions of
habitat currently deemed suitable but
predicted to become unsuitable under the
future climate scenario.

b. Increased suitable habitat:
Regions of habitat currently considered
unsuitable but predicted to become
suitable under the future climate
scenario.

c. Climate refugia: Regions of
habitat currently suitable and predicted to

remain suitable under the future climate



scenario.
Results

Using a criterion of Pearson
correlation coefficients < 0.7, the 28
predictive variables obtained earlier
were narrowed down to 11 variables
for constructing the prediction models.
Table 1 shows the average AUC and
TSS calculated from the test dataset
using five algorithms, each with 100
replicates. In general, BRT, MaxEnt and
SVM had good accuracy; of these, BRT

showed the best performance, indicating
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that these models had greater prediction
power. Only 112 high-performance
models (TSS>0.8) were retained for the
following weighted averaging to ensure
highly accurate predictions. As a result,
this ensemble model was employed
to predict suitable habitats for P.
transarisanensis. The habitat distribution
of the entire study area is shown in Fig.
1b. It is evident that the spatial pattern is
confined to areas with relatively higher
altitudes, estimated to cover a total area

of 1,396 km?.

Table 1 The area under the curve for the receiver operating characteristic (AUC) and true skill statistic

(TSS) generated by five algorithms

% | STEHEAEHLZ PRUCEERFRF Ul 4R T I (receiver operating characteristic, ROC) EEEH£L
RE4RETHHE (true skill statistic, TSS)

Algorithm AUCmean SD TSSmean SD

Boosted regression 0.89 0.07 0.74 0.11
Generalized L model 0.86 0.06 0.69 0.11
Multivariate adaptive regression splines  0.84 0.10 0.67 0.13
Maximum entropy 0.89 0.06 0.72 0.10
Support vector machine 0.88 0.07 0.71 0.12

SD: standard deviation

10
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Fig. 1 (a) Occurrence records of Prunus transarisanensis, and a digital elevation model. Brighter colors
indicate higher elevations; (b) predicted results according to the ensemble model.
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Taking into consideration the impor-
tance of each variable in model fit, the
variables with an importance>10%
include minimum temperature of
coldest month (78.82%), precipitation
of warmest quarter (22.63%), slope
(10.66%) and soil texture fraction silt
in percent (10.19%). The effects of
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the remaining variables are relatively
insignificant (Table 2). The climatic
variables are clearly the most domi-
nant, with the minimum temperature
of the coldest month and precipita-
tion of the warmest quarter being the
two most important variables that are

related to the species’ occurrence in

Table 2 Estimates of importance (%) of the predictor variables to the ensemble model

2 BTSRRI RIH B (%)

Variable

Importance

Minimum temperature of coldest month

Precipitation of the warmest quarter
Slope

Soil texture fraction silt in percent
Precipitation of the coldest quarter
Cation exchange capacity

Mean diurnal range

Aspect

Temperature seasonality

Soil pH

Soil texture fraction sand in percent

78.82

22.63

10.66

10.19

8.38

8.24

7.51

7.02

5.93

5.82

4.45

12
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ensemble prediction. warmest quarter (Fig. 2). The peak value
The primary contributing variables of the former variable occurred below
from ensemble prediction indicate that 1°C, while that of the latter variable
the probability of occurrence was highest occurred around 700 mm. Analysis of
at the lowest minimum temperature of the response curves above indicates
the coldest month and precipitation of the that P. transarisanensis prefers a cool
a.
0.30 -
0.25 A
2020 A
80.15 -
e
0 0.10 A
0.05 A
0~00 T T T T T 1
-5 0 5 10 15 20 25
Minimum temperature of the coldest month (°C)
b.
0.10 -
0.08 A
2
= 0.06 A
Ko}
®©
Ko}
2 0.04 -
@
0.02 -
0.00 T T . )
600 1100 1600 2100 2600

Precipitation of the warmest quarter (mm)

Fig. 2 Response curves of the primary contribution variables based on the ensemble prediction. (a)
minimum temperature of the coldest month; (b) precipitation of the warmest quarter.
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environment and requires moderate
precipitation.

From the current to the future,
the habitat dynamic range of P.
transarisanensis is projected. Overall, in
the future, only two types of habitats will
remain: climate refugia and vulnerable
habitats, with the majority of the area
occupied by vulnerable habitats. Under
the low-emission SSP126 scenario,
only a small amount of suitable habitat,
estimated at approximately 355 km?, can
be maintained as refugia. Under the more
severe warming scenarios of SSP370 and
SSP585, the majority of suitable habitats
are predicted to transition into vulnerable
habitats, and climate refugia virtually

cease to exist (Fig. 3).

Discussion

Due to its significant contribution
to performance improvement, EENM is
one of the most commonly used tools for
predicting the impact of climate change

on suitable habitats of species (Yun et al.

14
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2017; Jung et al. 2023). The ensemble
model constructed in this study was
employed to predict the distribution of
P. transarisanensis. Among the single
algorithms, BRT, MaxEnt, and SVM
were found to perform exceptionally
well. A commonality among them is
that they all belong to machine learning
algorithms. Compared with the two
linear models of GLM and MARS,
machine learning algorithms are able to
process non-linear relationships between
predictors (Recknagel 2001). Therefore,
this might be the reason why the models
fitted by these three algorithms showed
relatively better performance, as stated
above. The result is similar to previous
investigations on other plant species
(Rahmanian ef al. 2021; Sarma et al.
2022). To maintain the stability of the
final model, only high-performance
models are retained for the ensemble,
ensuring that subsequent scenario
simulations and conservation planning

are built on a robust scientific foundation.
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Current SSP126

SSP370 SSP585

. A /@,—‘?\A\
Suitable habitat 3
Climate refugia 100
I Vuinerable habitat | lkm

Fig. 3 The dynamic range of suitable habitat for Prunus transarisanensis. The upper left panel shows
the current distribution, while the upper-right, bottom-left and bottom-right panels represent the
SSP126, SSP370, and SSP585 emission scenarios, respectively, for the period of 2071-2100.
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Prunus species are highly
sensitive to temperature, which is one
of the primary factors regulating their
flowering stage. Similar to annual or
biennial plants, Prunus species undergo
a vernalization process. This involves
accumulating a certain amount of chilling
during endodormancy and heat during
ecodormancy to ensure proper flowering
in spring (Luedeling et al. 2013; Fadon
et al. 2015). Therefore, maintaining a
certain low-temperature level during the
winter is one of the key prerequisites for
their subsequent growth and development
cycle (Szalay et al. 2010; Luedeling et
al. 2013; Benmoussa et al. 2017; Zhang
et al. 2023). The model fitting in this
study indirectly supports this perspective.
The ensemble model indicated that
among the temperature-related variables,
the minimum temperature of the coldest
month strongly influenced the prediction
of suitable habitat for P. transarisanensis.
Habitats with a certain level of cold

during the coldest month are relatively
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suitable for this species. After sufficient
chill accumulation, the reproductive
activity starts with inflorescence
emergence as pointed out by Sakar et
al. (2019). On the contrary, relatively
high temperatures during winter may
affect the tolerance limit to flowering,
disrupting their phenological cycles
and resulting in significant negative
consequences. Additionally, a peak
value is observed in the curve around
1°C, likely attributed to other variables,
though it does not alter the overall trend
interpretation. Besides temperature,
precipitation in mountain areas is also
an important factor, influencing not only
plant growth but also genetic variations
(Chaves et al. 2003; Manel et al. 2012).
This study suggests that moderate
precipitation (approximately below 1,000
mm) during the warm season is favorable
for P. transarisanensis. Conversely,
excessive precipitation may lead to
adverse outcomes.

As high mountain plants have
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narrow elevation tolerance, they are
more exposed to a greater risk of habitat
loss and local extinction due to climate
change than species distributed at lower
elevations (Guisan and Theurillat 2000;
Engler ef al. 2011). In this study, the
species distribution predictions indicate
that P. transarisanensis is found in the
mountainous areas on the northern side
of Taiwan, which have characteristics
similar to temperate climate zones (Li
et al. 2015). However, according to
past climate observations, Taiwan has
experienced increasing temperatures and
continuous rise in extreme rainfall over
the past few decades (Hsu and Chen
2002; Shiu et al. 2009; Jump et al. 2012;
Tung et al. 2022). Therefore, the climate
in Taiwan is becoming increasingly less
favorable for P. transarisanensis, which
prefers cooler and moderate precipitation
environments in the mountains. This also
suggests that the suitable habitat of this
species is likely undergoing qualitative

shifts due to climate change.
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As for future projections, the
results of most GCMs agree that
Taiwan is highly susceptible to
extreme temperatures. For instance,
heatwaves are expected to intensify,
becoming more frequent and prolonged.
Conversely, extremely cold days are
gradually disappearing (Tsai ef al. 2023).
Regarding changes in spatial patterns
of temperature, the warming is more
significant in high mountains than in
plains, profoundly impacting ecosystems
and species distributions (Lin ef al. 2015).
Additionally, precipitation distribution
in various regions is significantly
uneven, leading to increasing drought
and flood risks (Huang ef al. 2012).
According to the analysis results of this
study, the majority of suitable habitats
for P. transarisanensis are projected to
transition into vulnerable habitats due to
the impact of climate change. Even under
the low emission scenario (SSP126),
the available area serving as climate

refugia is constrained. Under the more



severe emission scenarios of SSP370 and
SSP585, the predicted degradation of
suitable habitats is expected to be more
severe, potentially leading to a high risk
of extinction for this species.

In order to adapt to future climate
change, this study proposes several
recommendations for the conservation
of P. transarisanensis. Firstly, in the
current conservation assessment system
in Taiwan at the regional level and
according to the International Union
for Conservation of Nature (IUCN)
criteria, this species is classified as
“Near Threatened,” falling short of the
threatened status (Editorial Committee
of the Red List of Taiwan Plants 2017;
IUCN 2022). However, it is important
to emphasize that it is a “vulnerable
species” susceptible to the impacts of
climate change, which requires increased
conservation efforts. Furthermore, given
the potential vulnerability of habitats,
immediate priority should be given to

these areas for ex situ conservation. Due

18
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to the well-established conservation
network in the mountainous areas of
Taiwan (Tang et al. 2006), there is
limited space available for adjusting
nature reserves to maintain suitable
habitats. Therefore, it is necessary to
enhance long-term monitoring efforts
related to climate refugia to prevent
the extinction of this species. Finally,
incorporating the impacts of climate
change into [IUCN Red List assessments
could potentially alter the threat status
of numerous endemic species (Trull
et al. 2018). As a result, the research
framework established in this study can
be regarded as a valuable insight for
evaluating other species listed in the Red

List.
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